Preconditioning Reduced Matrices

نویسندگان

  • Stephen G. Nash
  • Ariela Sofer
چکیده

We study preconditioning strategies for linear systems with positive-deenite matrices of the form Z T GZ, where Z is rectangular and G is symmetric but not necessarily positive deenite. The preconditioning strategies are designed to be used in the context of a conjugate-gradient iteration, and are suitable within algorithms for constrained optimization problems. The techniques have other uses, however, and are applied here to a class of problems in the calculus of variations. Numerical tests are also included.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Use of Discrete Laplace Operator for Preconditioning Kernel Matrices

This paper studies a preconditioning strategy applied to certain types of kernel matrices that are increasingly ill conditioned. The ill conditioning of these matrices is tied to the unbounded variation of the Fourier transform of the kernel function. Hence, the technique is to differentiate the kernel to suppress the variation. The idea resembles some existing preconditioning methods for Toepl...

متن کامل

The structured distance to normality of Toeplitz matrices with application to preconditioning

A formula for the distance of a Toeplitz matrix to the subspace of {e}-circulant matrices is presented, and applications of {e}-circulant matrices to preconditioning of linear systems of equations with a Toeplitz matrix are discussed. Copyright c © 2006 John Wiley & Sons, Ltd. key words: Toeplitz matrix, circulant matrix, {e}-circulant, matrix nearness problem, distance to normality, preconditi...

متن کامل

Preconditioning Sparse Matrices for Computing Eigenvalues and Solving Linear Systems of Equations

Preconditioning Sparse Matrices for Computing Eigenvalues and Solving Linear Systems of Equations

متن کامل

Stair Matrices and Their Generalizations with Applications to Iterative Methods Ii: Iteration Arithmetic and Preconditionings

Iteration arithmetic is formally introduced based on iteration multiplication and αaddition which is a special multisplitting. This part focuses on construction of convergent splittings and approximate inverses for Hermitian positive definite matrices by applying stair matrices, their generalizations and iteration arithmetic. Analysis of the splittings and the approximate inverses is also prese...

متن کامل

Scalable Parallel Preconditioning with the Sparse Approximate Inverse of Triangular Matrices

In this paper an approach is proposed for preconditioning large general sparse matrices. This approach combines the scalability of explicit preconditioners with the preconditioning eeciency of incomplete factorizations. Several algorithms resulting from this approach are presented. Both the preconditioning eeciency and the cost of applying this preconditioner are tested. The experiments indicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1996